SKHI-Driver Family Features

<table>
<thead>
<tr>
<th>Features</th>
<th>PCB Driver</th>
<th>PCB mountable Driver</th>
<th>Primary side ASIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• TOP BOTTOM Interlock</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Short Pulse Suppression</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• $V_{CE_{sat}}$ Monitoring</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Undervoltage Monitoring</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Easy User Interface</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Optional TTL-compatible Input</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Very high EMI Immunity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• "Plug and Play"</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated DC-DC converter</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>• Very high dv/dt-Resistance</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>• High Isolation</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Profile of SKHI-advantages

- Needs only one non-isolated +15V power supply (even when using 3 drivers in 3-phase systems)
- Very high dv/dt capability by using magnetic transformers, up to 75 kV/µs
- Isolation between control/IGBT up to 4kV
- Output peak current capability up to 30A
- Interlock top/bottom avoids two IGBTs of same leg being switched-on at same time
- Dead-time, V_{CE}-supervision, $R_{gon/off}$ seperately adjustable to optimize for user’s specific application
- Fault memory informs the control system via an error signal
- Supply undervoltage protection

SKHI details that make a difference

SKHI-drivers output stage

- MOSFET output transistor pair, with reduced ohmic contact
 - Improves speed of turn-on and turn-off with reduced power losses
- Integrated voltage source
 - Increased reliability
- Regulated supply voltage
 - Provides full power output pulses without V_{GE} degradation

Under static operating conditions the IGBT needs no gate drive current because it is voltage controlled, but since the gate input has a large capacitance, a gate drive current of short duration pulses at turn on/off has to be generated. In fig.1 basic circuit drive of an IGBT is shown.

For a 75A/1200V device (e.g. SKM 75GB123D) fig.2 details the behaviour of V_{ge} and I_g. The peak gate current reaches approx 1.3A during the turn-on time (e.g. 200ns) and still has to charge the input capacitance without reducing V_{ge}, a feature which can only be achieved with a special out-
put buffer rather than an optocoupler. Another important point is how fast the IGBT can be switched. With gate charge \(Q_{on} \), \(Q_{off} \) respectively, the total power \(P_G \) needed to drive the IGBT may be calculated with the following simple equation:

\[
P_G = V_{GE} \times f \times Q_{on} + |V_{GE}| \times f \times Q_{off}
\]

From this equation the maximum possible switching frequency \(f \) can be calculated.

The voltage of the driver output stage has to be kept stable all the time to achieve the lowest possible \(V_{CEsat} \) related losses. Furthermore gate resistor \(R_g \) is important. It limits the amplitude of the gate current pulses during turn-on and turn-off. By varying \(R_g \) it is possible to control the switching losses. (Detailed informations are given in \(\rightarrow \) application)

SKHI short-circuit detection

- \(V_{CE} \) trip level fixed to the IGBT in use (factory adjusted)
- Easier engineering and handling
- Adjustable delay time for the \(V_{CE} \) signal
- Avoids false short circuit signal to the \(V_{CE} \) monitor
- Error fault memory
- Avoids repetitive high current peaks
- Error signal output
- Informs the main control board

When using an IGBT in an inverter circuit, short circuit breakdown of a device becomes an important protection parameter. Over-currents are mainly caused by the following conditions:

- Short-circuited output
- Simultaneous switch-on of a pair of transistors from same leg
- Earth fault in the load circuit

The detection of the over-current as well as the processing of the response signal in the electronic monitoring stage requires a certain time. To prevent electrical components from undesired stress and to achieve a high degree of reliability, it is always an advantage to terminate the over-current as quick as possible. To perform this, the turn-off signal should be applied to the
driver stage of the IGBT with the shortest possible delay (<10µs). The detection of the overcurrent is made with V_{ce}-monitoring. For the efficient detection of a short-circuit current the collector-emitter voltage (V_{ce}) of an IGBT can be utilized because it rapidly increases as a result of desaturation.

During short circuit the V_{ce} detection circuit always monitors the input “on-signal” and the collector-emitter voltage; when the input signal is high after 3 ... 5µs V_{ce} is higher than the normal value range the output signal turns off (fig.3).

SKHI potential isolation

Using coated toroid ferrite transformers.

- Provides high isolation between input and output (up to 4kV, drives IGBTs up to 1700V).
- High dv/dt immunity between primary and secondary side (up to 75kV/µs).

The elements of the control system (IC, µP, etc.) operate always at a low voltage level of between 5V to 15V and, therefore, noise voltages may influence their function. For this reason it is an advantage to place the interface for potential separation in the control section between the electronics and driver stage.

In the case of two-pulse or six-pulse inverter bridge circuits the relatively fast turn on and turn off of the IGBTs cause steep voltage steps (high dv/dt values). Therefore it has to be taken...
into account that even if the interface is located favourably, disturbances may still occur. The reasons for this are:

- Noise signals can reach the control system via the internal capacitive coupling of the device used for electrical isolation, noise signals may disturb the control system.
- In the forward direction the same noise signals cause unwanted oscillations, particularly in the case of commercial grade opto-couplers, due to the high coupling capacitance and relatively high-resistive termination.

Signal transformers are therefore best suited to transmit the information to the respective driver stages. As compared with opto-couplers they are distinctly less noise sensitive. Moreover, they offer less problems to achieve a higher isolation voltage (see fig.4).

SKHI auxiliary power supply

- Internal DC/DC converter with isolated ferrite transformers
- Under-voltage supervision on the primary side
- Independent power supply per IGBT with very low coupling capacitance

The use of big mains transformers (50/60Hz) would always require secondary connected stabilisation networks with voltage regulators (and big capacitors) to compensate for the voltage fluctuations. Since the voltage supply is often needed for several control sections this design can be very impractical.

The use of a central RF-generator from f > 50kHz with approximately constant alternating output voltage, eliminates the above mentioned problems and leads to six considerably smaller transformers with relatively low capacitive coupling.
SKAI 100

Features:
- PCB driver
- SMT (Surface Mounted Technology)
- 15V and 24V power supply
- self controlled switching mode
- external switching signal also possible
- short circuit protection via \(V_{ce} \) monitoring
- supply undervoltage protection
- overtemperature protection possible
- error memory
- isolation voltage up to 3,5 kV\(_{AC}\)

The brake chopper driver SKAI 100 is for driving SEMIKRON IGBT type "SKM...GAL...". The brake chopper levels can be adjusted to the application. The SKAI 100 is preset for line voltage of 400V. The SKAI 100 has a circuit integrated which allows the self controlled switching of the IGBT determined only by the brake resistor. External switching is also possible.

\[V_{gon} = +15V \]
\[V_{goff} = 0V. \]

SKHI 10

Features:
- PCB driver
- SMT (Surface Mounted Technology)
- 15V power supply
- 5V (TTL) and 15V (CMOS) control signals
- short circuit protection via \(V_{ce} \) monitoring
- soft short circuit turn-off
- supply undervoltage protection
- error memory
- error output signal (high or low logic possible)
- isolation voltage 4kV\(_{AC}\)

The driver SKHI 10 is for driving all single IGBTs up to \(V_{CES} = 1700V. \)

Two versions are available. SKHI10 drives IGBTs up to \(V_{CES} =1200V. \) SKHI10/17 drives IGBTs up to \(V_{CES} =1700V. \)

5V or 15V input signals, high or low logic error signal feedback, separate reset signal for the error memory, easy adjustment of \(R_{gon/off} \) offers big flexible adaptability according to the application needs.

\[V_{gon} = +15V \]
\[V_{goff} = -8V. \]
SKHI 21/22

Features:
- PCB-mountable
- hybrid technology
- 15V power supply
- 15V (CMOS) control signals
- short circuit protection via V_{CE} monitoring
- error memory
- interlock of TOP and BOTTOM switch
- supply undervoltage protection
- isolation up to 4kV AC
- in single channel operation double power

The hybrid driver SKHI 21/22 is made for soldering into a printed circuit board.

Switching on the IGBT is made with +15V. V_{Goff} of the SKHI 21 is 0V, V_{Goff} of the SKHI 22 is -15V. SKHI 21 drives IGBTs up to $V_{CES} = 1200$V. SKHI 22 drives IGBTs up to $V_{CES} = 1700$V. SKHI 21 is particularly designed to drive MOSFETs ($U_{DS} < 10$V).

The printed circuit board SKPC 2006 is an universal PC-board for the driver SKHI 21/22. SKPC 2006 is prepared to carry all external devices neccessary to adapt to the application. The output connectors are positioned for auxiliary connections to SEMITRANS 3 modules.

SKHI 21/22A/B

SKHI 21/22A — full compatible design to SKHI 21/22 but
- nearly double output power
- V_{Goff} of the SKHI 22A is -8V

SKHI 22B — same principal design as the SKHI 22 except
- variable dead time
- optional 5V-control-levels
- nearly double output power
- V_{Goff} of the SKHI 22B is -8V

* given for SEMIKRON IGBT-devices
SKHI 23

Features:
• PCB driver
• SMT (Surface Mounted Technology)
• 15V power supply
• 5V(TTL) or 15V(CMOS) control signals
• short circuit protection via V_{CE} monitoring
• soft short circuit turn-off
• supply undervoltage protection
• error memory
• error output signal (high or low logic possible)
• interlock of TOP/BOTTOM (deadtime adjustable)
• isolation voltage 4kVAC

SKHI 23 is available in two versions.

SKHI 23/12 drives IGBTs up to $V_{CES} = 1200V$.
SKHI 23/17 drives IGBTs up to $V_{CES} = 1700V$.

V_{CE} trip level is preset to 5,2V for the SKHI 23/12 and 6,3V for the SKHI 23/17.

5V or 15V input signals, high or low logic error signal feedback, easy adjustment of $R_{Gon/off}$ offers flexible adaptation according to the application. This adaptation can be easily done by soldering additional electronic devices onto reserved pins on the PC-board. SKHI 23 is coated with varnish to protect against moisture and dust.

$V_{Gon} = +15V$
$V_{Goff} = -8V$.

SKHI 26

Features:
• PCB driver
• SMT (Surface Mounted Technology)
• 15V power supply
• 15V (CMOS) control signals
• SKHI 26 W has wire connector
• SKHI 26 F has fibre optic control connector
• short circuit protection via V_{CE} monitoring and soft turn-off
• supply undervoltage protection
• interlock of TOP/BOTTOM
• isolation voltage 2,5 kVAC

SKHI 26 is a high power dual driver for driving IGBT modules up to $V_{CES} = 1200V$.
SKHI 26W uses wire connectors to transfer the control signals. SKHI 26 F uses fibre optic connectors to transfer the control signals.

$V_{Gon} = +15V$
$V_{Goff} = -8V$.

given for SEMIKRON IGBT-devices
SKHI 27

Features:
• PCB driver
• 15V power supply
• 15V (CMOS) control signals
• SKHI 27 W has wire control connector
• SKHI 27 F has fibre optic control connector
• short circuit protection via V_{CE} monitoring
• supply undervoltage protection
• interlock of TOP/BOTTOM
• isolation voltage 4 kV_{AC}

SKHI 27 is a high power dual driver for paralleling a big number of IGBT modules.

For driving IGBTs, 2 versions are available.

SKHI 27 W uses wire connectors to transfer the control signals. SKHI 27 F uses fibre optic connectors to transfer the control signals.

VGon = +15V
VGoff = -8V

Product range ASIC

SKIC 2001 / SKIC 6001

Features:
• 15V/5V power supply
• high voltage MOSFET technology
• selectable interlock time
• V_{CE} error input
• overcurrent error input
• signal transfer via magnetic transformers or opto-couplers possible
• supply undervoltage monitoring

The ASIC SKIC 2001 for half-bridge application and SKIC 6001 for three phase bridge application comprises the primary side functions of a modern intelligent IGBT/MOSFET-driver.

They include several protection and monitoring functions, such as short pulse suppression, interlock of TOP and BOTTOM IGBT, undervoltage monitoring of the supply voltage as well as a common error processing.

An integrated high frequency DC-DC converter driver reduces complexity of isolated power supply.

Switching signals can be transferred via magnetic transformers or opto-couplers to reach high levels of dv/dt and isolation.

For doing first tests with SKIC 2001, SEMIKRON offers evaluation boards with the ASIC included. LEDs will indicate the status of signals.

Suitable isolation transformers for customer specific drivers are available.

* given for SEMIKRON IGBT-devices
Product range - Sixpack Driver

SKHI 61

Features:
• PCB mountable driver
• hybrid technology
• easy design with MiniSKiiP®, SEMITRANS®, ECONOPACK
• 5V/15V control signals
• short circuit protection via $V_{ \text{CE} \text{sat}}$ monitoring
• error memory
• supply undervoltage monitoring
• variable interlock time TOP/BOTTOM (0-4µs)
• isolation voltage 2.5 kVAC
• max. DC link voltage 850V
• $V_{\text{Gon}}=15V$, $V_{\text{Goff}}=-8V$
• optional integrated brake chopper driver available

The sixpack driver SKHI 61 drives IGBT up to $V_{\text{CES}}=1200V$.

Driver kit SKHIBS 01/02

Two subprints together with a mag. transformer represent the SEMIKRON driver kit SKHIBS. The driver kit is for soldering into a printed circuit board. SKHIBS 01 is for driving IGBTs without protection. SKHIBS 02 also protects the IGBT with SEMIKRON driver principle "OCP" - Over Current Protection, using closed loop current sensors.

These drivers are particularly suitable for driving MiniSKiiP® 8 as well as SEMITRANS® six-packs or sevenpack modules. SKHIBS 01/02 drives 1200V IGBTs up to 120A at 20 kHz.

* given for SEMIKRON IGBT-devices
As a supplier of a broad line of power IGBTs/MOSFETs and drivers, we are able to give you valuable support for your power application. To save your engineering time just contact our application engineers for design in support.

- Input rectifiers/inverters
- DC link bus bars design with capacitors
- IGBT/MOSFET modules
- Drivers
- Heatsinks with/without fan
- Specific circuit designs
- SKiiPACK®
- MiniSKiiP®

Applications

- AC-motor inverter with discrete drivers
- High current power supplies with discrete drivers
- AC-motor inverter with SKHI drivers
- High current power supplies with SKHI drivers

- No transformers!
- No auxiliary supplies!
- Isolation inside!
- Protection inside!
- CMOS signals!
Application

Selection of the suitable driver

To find the suitable driver, which is able to drive the IGBT, some details need to be considered.

1. The calculation of the maximum switching frequency - The driver must be able to provide the necessary power (output current)

The individual power of each internal supply necessary to drive the IGBT can be found as a function of the intended switching frequency and the energy which has to be used for charging and discharging the IGBT.

The necessary driver energy E can be found from the marked area, shown in fig.6:

$$E = \Delta Q \times \Delta U$$

The switching energy per cycle for a SKM 200 GB 123 D is calculated at:

$$E = [870nC - (-260nC)] \times [15V - (-8V)]$$

$$E = 25.99 \mu J$$

The necessary output power P of the driver now can be calculated with:

$$P = E \times f_{sw} = \Delta Q \times \Delta U \times f_{sw}$$

The average output current I_{outAV} is defined by:

$$P = I_{outAV} \times \Delta U$$

The comparison of the two equations for the output power P leads to the relation between ΔQ, I_{outAV} and f_{sw}:

$$\Delta Q = I_{outAV} / f_{sw}$$

With the data sheet value ΔQ for the IGBT and I_{outAV} given in the data sheet of the driver the maximum permissible switching frequency f_{swmax} can be calculated.

Using the driver SKHI 23/12 with $I_{outAV} = 50mA$ leads to

$$f_{swmax} = I_{outAV} / \Delta Q$$

$$f_{swmax} = 50mA / 1130nC$$

$$f_{swmax} = 44kHz$$

According to the calculation the driver is able to drive SKM 200 GB 123D with a maximum switching frequency of 44kHz.

Using the driver SKHI 22 with $I_{outAV} = 20mA$ then f_{swmax} will be:

$$f_{swmax} = I_{outAV} / \Delta Q$$

$$f_{swmax} = 20mA / 1130nC$$

$$f_{swmax} = 17.7kHz$$
2. The calculation of minimum R_{Gon} and R_{Goff}

The IGBT switching time is controlled by charging and discharging the IGBT’s input capacitance. Increasing the gate peak current (with R_{Gon} and R_{Goff} the gate charge currents can be controlled) the turn-on and turn off time will be shorter and the switching losses will be reduced.

The maximum peak current I_{outPEAK} can be calculated with the following relation:

$$I_{\text{outPEAK}} = \frac{V_{\text{G(on)}} - V_{\text{G(off)}}}{R_g}$$

In the data sheets of SKHI drivers the minimal gate resistors $R_{\text{Gon,min}}$ and $R_{\text{Goff,min}}$ are given. These values have to be considered to optimize the gate drive circuit.

3. The determination of maximum gate charge per pulse

The output capacitors of the driver must be able to support the necessary energy for charging and discharging the gate of the IGBT in use. The capacitors on the driver deliver the peak current for charging the IGBT. For this reason the output capacitors of the driver must be large enough for the gate charge Q_o of the IGBT. The limitation of the maximum charge per pulse is given by these capacitors. In the data sheets of SKHI drivers this maximum charge per pulse Q_{outpulse} is given.
<table>
<thead>
<tr>
<th>Characteristics and features</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types SKHI</td>
<td></td>
</tr>
<tr>
<td>Input signal voltage</td>
<td>V_{ih}</td>
</tr>
<tr>
<td>Supply voltage prim.</td>
<td>V_s</td>
</tr>
<tr>
<td>Supply current max.</td>
<td>I_s</td>
</tr>
<tr>
<td>Isolation volt. (AC rms; 1min)</td>
<td>V_{isol}</td>
</tr>
<tr>
<td>Isol. volt. (AC rms; 1min) $"H4"$</td>
<td>V_{isol}</td>
</tr>
<tr>
<td>Output voltage on</td>
<td>V_{s}</td>
</tr>
<tr>
<td>Output voltage off</td>
<td>V_{g}</td>
</tr>
<tr>
<td>Output current peak max.</td>
<td>I_{d}</td>
</tr>
<tr>
<td>Output current av. max.</td>
<td>I_{av}</td>
</tr>
<tr>
<td>Delay time (typ.)</td>
<td>t_{do}</td>
</tr>
<tr>
<td>V_{ce}max (sense)</td>
<td>V_{ce}</td>
</tr>
<tr>
<td>Rate of rise of V_{ce}</td>
<td>dv/dt</td>
</tr>
<tr>
<td>Length</td>
<td>L</td>
</tr>
<tr>
<td>Width</td>
<td>W</td>
</tr>
<tr>
<td>Height</td>
<td>H</td>
</tr>
</tbody>
</table>

Common features:
- MOS compatible inputs
- Short circuit monitoring and switch off
- Supply undervoltage monitoring $V_s<13$V
- Isolation primary/secondary by pulse transformer
- Error latch and monitoring output signal
- Internal isolated power supply

Features:
- Short circuit monitoring via opto-couplers
- Supply undervoltage monitoring
- Isolation primary/secondary by pulse transformer
- Interlock of TOP/BOTTOM
- Short pulse suppression
- Temperature monitoring
- Supply undervoltage monitoring
- Control of V_{ce} error protection

Technology:
SMT, Hybrid, SMT, Hybrid, Hybrid, Hybrid, Hybrid, Hybrid, Hybrid, Hybrid, Hybrid, Hybrid

FOR POWER CIRCUIT TOPOLOGY
- SINGLE switch
- halfbridge, halfbridge
- SIXPAK, SIXPAK
- SMT, SMT

Interlock top/bottom
- •

Fibre optic input $"F"$
- •

Short circuit soft switch-off
- •

1) TOP switch (BOTTOM switch has 10kV/µs)
2) brake chopper driver optional
3) SKHI 10 and SKHI 23/12 drives IGBTs up to 1200V
SKHI 10/17 and SKHI 23/17 drives IGBTs up to 1700V
4) SKIC2001 for halfbridge application
SKIC6001 for threephase bridge application
5) for using with 1700V-IGBT on request
6) preliminary data
7) SKIC 2001
<table>
<thead>
<tr>
<th>Country, City</th>
<th>Intnl. Tel. (national)</th>
<th>Fax (national)</th>
<th>Intnl. Tel. (national)</th>
<th>Fax (national)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Östereich, Wien</td>
<td>+43 01-586 3658</td>
<td>01-586 3650 32</td>
<td>IL, Israel, Tel-Aviv</td>
<td>+972 03 5776 8800</td>
</tr>
<tr>
<td>AUS Australia, Mulgrave Vic (Melb.)</td>
<td>+61 03-9561 3044</td>
<td>03-9561 8769</td>
<td>IND India, Mumbai (Bombay)</td>
<td>+91 22-7619 745</td>
</tr>
<tr>
<td>BEL Belgique, Bruxelles</td>
<td>+32 02-721 5350</td>
<td>02-725 3404</td>
<td>J Japan, Tokyo</td>
<td>+81 3-5039 5076</td>
</tr>
<tr>
<td>BR Brasil, Carapicuiba/Sao Paulo</td>
<td>+55 011-7287 0055</td>
<td>011-7287 3567</td>
<td>LV Latvia, Riga</td>
<td>+358-9-870 1266</td>
</tr>
<tr>
<td>BR Brasil, Sorocaba</td>
<td>+55 015-232 3253</td>
<td>015-233 1376</td>
<td>LT Lithuania, Vilnius</td>
<td>+358-9-870 1266</td>
</tr>
<tr>
<td>CH Schweiz/Suisse, Küsnacht (ZH)</td>
<td>+41 01-9141330</td>
<td>01-9141330</td>
<td>MEX Mexico, Naucalpan de Juarez</td>
<td>+52 5-300 7922</td>
</tr>
<tr>
<td>CHN China, VfL, Qingdao</td>
<td>+86 0532-8701773</td>
<td>0532-8701478</td>
<td>NL Nederland, Weemserveer (AMS)</td>
<td>+31 55-529 5256</td>
</tr>
<tr>
<td>CZ Cesko, Brumov</td>
<td>+42 657-98445</td>
<td>657-98446</td>
<td>NZ New Zealand, Auckland</td>
<td>+64 09-473 2180</td>
</tr>
<tr>
<td>D Deutschland, Nürnberg</td>
<td>+49 911-6559 0</td>
<td>911-6559 262</td>
<td>P Portugal, Lisboa</td>
<td>+351 1-3224 1603</td>
</tr>
<tr>
<td>D Baden-Württ., Göttingen</td>
<td>+49 719-561 956</td>
<td>719-561 956</td>
<td>PL Polska, Wroclaw</td>
<td>+48 071-442 532</td>
</tr>
<tr>
<td>D Hessen/Saar/Prat</td>
<td>+49 6201-393 090</td>
<td>6201-393 092</td>
<td>RA Argentina, Buenos Aires</td>
<td>+54 01-709 0059</td>
</tr>
<tr>
<td>D Nordbayern, Emskirchen</td>
<td>+49 9104-3888</td>
<td>9104-3811</td>
<td>RC Taiwan, Taichung</td>
<td>+886 02-758 0533</td>
</tr>
<tr>
<td>D Nord-Westfalen, Neunkirchen</td>
<td>+49 9181-261033</td>
<td>9181-261034</td>
<td>RCH Chile, Santiago de Chile</td>
<td>+56 02-221 9599</td>
</tr>
<tr>
<td>D Ostdeutschland, Dresden</td>
<td>+49 351-650 3300</td>
<td>351-650 3309</td>
<td>RU Indonesia, Jakarta</td>
<td>+61 3-9561 3044</td>
</tr>
<tr>
<td>D Schlesw./Nieders., Bremen</td>
<td>+49 421-256 029</td>
<td>421-252 170</td>
<td>ROK Korea, Puchon City (Seoul)</td>
<td>+82 03-346-2830/3</td>
</tr>
<tr>
<td>D Nordbayern, Müncheberg</td>
<td>+49 821-433 062</td>
<td>821-436 904</td>
<td>RUS Russland (ROSSIA), Moskva</td>
<td>+7 095-305 77-38</td>
</tr>
<tr>
<td>DK Danmark, Strelleby (København)</td>
<td>+45 48-195 044</td>
<td>48-183 837</td>
<td>S Sverige, Stollemunde (Stockholm)</td>
<td>+46 08-754 9155</td>
</tr>
<tr>
<td>E España, Barcelona</td>
<td>+34 93-410 0421</td>
<td>93-321 0141</td>
<td>SA South Africa, Arcadia/Pretoria</td>
<td>+27 012-333 3733</td>
</tr>
<tr>
<td>EST Eesti, Tallinn (Reval)</td>
<td>+358 09-870 1266</td>
<td>09-870 1308</td>
<td>SGP Singapore, Singapore</td>
<td>+65 288 8556</td>
</tr>
<tr>
<td>ET Egypt, Kairo</td>
<td>+20 02-258 4860</td>
<td>02-256 2861</td>
<td>SK Slowenia, Nova Dubrvice, IN</td>
<td>+421 08 272 232 97</td>
</tr>
<tr>
<td>F France, Sartrouville (Paris)</td>
<td>+33 01-3086 8000</td>
<td>01-3915 1083</td>
<td>SLO Slovenia, Ljubljana</td>
<td>+386 61-189 5214</td>
</tr>
<tr>
<td>FIN Suomi-Finland, Vantaa (HEL)</td>
<td>+358 09-870 1266</td>
<td>09-870 1308</td>
<td>TH Thailand, Bangkok</td>
<td>+66 02-757 8222</td>
</tr>
<tr>
<td>GB United Kingdom, Herford (LCN)</td>
<td>+44 01992-594 677</td>
<td>01992-594 942</td>
<td>TR Türkiye, Istanbul</td>
<td>+90 212-254 5405</td>
</tr>
<tr>
<td>H Magyarország, Budapest</td>
<td>+36 01-285 3502</td>
<td>01-285 3503</td>
<td>USA USA, Houston (TX)</td>
<td>+1 603-883 8102</td>
</tr>
<tr>
<td>H Kong Kong, Hongkong</td>
<td>+85 2826 4321</td>
<td>2826 4307</td>
<td>VN Vietnam, Ho Chi Minh</td>
<td>+84 08-864 1640</td>
</tr>
<tr>
<td>I Italia, Pomezia (Roma)</td>
<td>+39 06-911 4241</td>
<td>06-912 1138</td>
<td>YY Venezuela, Caracas</td>
<td>+50 02-263 3135</td>
</tr>
</tbody>
</table>